skip to main content


Search for: All records

Creators/Authors contains: "Bovy, Jo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Stellar streams are sensitive probes of the Galactic potential. The likelihood of a stream model given stream data is often assessed using simulations. However, comparing to simulations is challenging when even the stream paths can be hard to quantify. Here we present a novel application of self-organizing maps and first-order Kalman filters to reconstruct a stream’s path, propagating measurement errors and data sparsity into the stream path uncertainty. The technique is Galactic-model independent, non-parametric, and works on phase-wrapped streams. With this technique, we can uniformly analyse and compare data with simulations, enabling both comparison of simulation techniques and ensemble analysis with stream tracks of many stellar streams. Our method is implemented in the public Python package TrackStream, available at https://github.com/nstarman/trackstream. 
    more » « less
    Free, publicly-accessible full text available May 11, 2024
  2. ABSTRACT

    The primordial matter power spectrum quantifies fluctuations in the distribution of dark matter immediately following inflation. Over cosmic time, overdense regions of the primordial density field grow and collapse into dark matter haloes, whose abundance and density profiles retain memory of the initial conditions. By analysing the image magnifications in 11 strongly lensed and quadruply imaged quasars, we infer the abundance and concentrations of low-mass haloes, and cast the measurement in terms of the amplitude of the primordial matter power spectrum. We anchor the power spectrum on large scales, isolating the effect of small-scale deviations from the Lambda cold dark matter (ΛCDM) prediction. Assuming an analytic model for the power spectrum and accounting for several sources of potential systematic uncertainty, including three different models for the halo mass function, we obtain correlated inferences of $\log _{10}\left(P / P_{\Lambda \rm {CDM}}\right)$, the power spectrum amplitude relative to the predictions of the concordance cosmological model, of $0.0_{-0.4}^{+0.5}$, $0.1_{-0.6}^{+0.7}$, and $0.2_{-0.9}^{+1.0}$ at k = 10, 25, and 50 $\rm {Mpc^{-1}}$ at $68 {{\ \rm per\ cent}}$ confidence, consistent with CDM and single-field slow-roll inflation.

     
    more » « less
  3. ABSTRACT The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a large contribution of destroyed GCs to the stellar content of the inner halo, by as much as 25 ${{\ \rm per\ cent}}$, which is an order of magnitude larger than previous estimates for more distant regions of the halo. We set out to measure the ratio between nitrogen-rich (N-rich) and normal halo field stars, as a function of distance, by performing density modelling of halo field populations in APOGEE DR16. Our results show that at 1.5 kpc from the Galactic Centre, N-rich stars contribute a much higher 16.8$^{+10.0}_{-7.0}\, {{\ \rm per\ cent}}$ fraction to the total stellar halo mass budget than the 2.7$^{+1.0}_{-0.8}\, {{\ \rm per\ cent}}$ ratio contributed at 10 kpc. Under the assumption that N-rich stars are former GC members that now reside in the stellar halo field, and assuming the ratio between first and second population GC stars being 1:2, we estimate a total contribution from disrupted GC stars of the order of 27.5$^{+15.4}_{-11.5}\, {{\ \rm per\ cent}}$ at r = 1.5 kpc and 4.2$^{+1.5}_{-1.3}\, {{\ \rm per\ cent}}$ at r = 10 kpc. Furthermore, since our methodology requires fitting a density model to the stellar halo, we integrate such density within a spherical shell from 1.5 to 15 kpc in radius, and find a total stellar mass arising from dissolved and/or evaporated GCs of MGC,total = 9.6$^{+4.0}_{-2.6}\, \times$ 107 M⊙. 
    more » « less
  4. Abstract The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or “Mappers”: the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes ∼25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  5. ABSTRACT Core formation and runaway core collapse in models with self-interacting dark matter (SIDM) significantly alter the central density profiles of collapsed haloes. Using a forward modelling inference framework with simulated data-sets, we demonstrate that flux ratios in quadruple image strong gravitational lenses can detect the unique structural properties of SIDM haloes, and statistically constrain the amplitude and velocity dependence of the interaction cross-section in haloes with masses between 106 and 1010 M⊙. Measurements on these scales probe self-interactions at velocities below $30 \ \rm {km} \ \rm {s^{-1}}$, a relatively unexplored regime of parameter space, complimenting constraints at higher velocities from galaxies and clusters. We cast constraints on the amplitude and velocity dependence of the interaction cross-section in terms of σ20, the cross-section amplitude at $20 \ \rm {km} \ \rm {s^{-1}}$. With 50 lenses, a sample size available in the near future, and flux ratios measured from spatially compact mid-IR emission around the background quasar, we forecast $\sigma _{20} \lt 11\rm {\small {--}}23 \ \rm {cm^2} \rm {g^{-1}}$ at $95 {{\ \rm per\ cent}}$ CI, depending on the amplitude of the subhalo mass function, and assuming cold dark matter (CDM). Alternatively, if $\sigma _{20} = 19.2 \ \rm {cm^2}\rm {g^{-1}}$ we can rule out CDM with a likelihood ratio of 20:1, assuming an amplitude of the subhalo mass function that results from doubly efficient tidal disruption in the Milky Way relative to massive elliptical galaxies. These results demonstrate that strong lensing of compact, unresolved sources can constrain SIDM structure on sub-galactic scales across cosmological distances, and the evolution of SIDM density profiles over several Gyr of cosmic time. 
    more » « less
  6. Abstract The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemodynamical mapping of the Milky Way. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) “Ancillary Science Programs” competitively awarded to Sloan Digital Sky Survey IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5 yr expansion of the survey, known as the Bright Time Extension (BTX), made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The BTX permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new data sets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, F. Santana et al. (submitted; AAS29036), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere. 
    more » « less
  7. ABSTRACT

    Gaia DR2 has provided an unprecedented wealth of information about the kinematics of stars in the Solar neighbourhood, and has highlighted the degree of features in the Galactic disc. We confront the data with a range of bar and spiral models in both action-angle space, and the RG–vϕ plane. We find that the phase mixing induced by transient spiral structure creates ridges and arches in the local kinematics which are consistent with the Gaia data. We are able to produce a qualitatively good match to the data when combined with a bar with a variety of pattern speeds, and show that it is non-trivial to decouple the effects of the bar and the spiral structure.

     
    more » « less
  8. ABSTRACT

    Studies of the ages, abundances, and motions of individual stars in the Milky Way provide one of the best ways to study the evolution of disc galaxies over cosmic time. The formation of the Milky Way’s barred inner region in particular is a crucial piece of the puzzle of disc galaxy evolution. Using data from APOGEE and Gaia, we present maps of the kinematics, elemental abundances, and age of the Milky Way bulge and disc that show the barred structure of the inner Milky Way in unprecedented detail. The kinematic maps allow a direct, purely kinematic determination of the bar’s pattern speed of $41\pm 3\, \mathrm{km\, s}^{-1}\, \mathrm{kpc}^{-1}$ and of its shape and radial profile. We find the bar’s age, metallicity, and abundance ratios to be the same as those of the oldest stars in the disc that are formed in its turbulent beginnings, while stars in the bulge outside of the bar are younger and more metal-rich. This implies that the bar likely formed ${\approx}8\, \mathrm{Gyr}$ ago, when the decrease in turbulence in the gas disc allowed a thin disc to form that quickly became bar-unstable. The bar’s formation therefore stands as a crucial epoch in the evolution of the Milky Way, a picture that is in line with the evolutionary path that emerges from observations of the gas kinematics in external disc galaxies over the last ${\approx}10\, \mathrm{Gyr}$.

     
    more » « less